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Abstract--A two-equation model is applied to a stratified two-phase flow system to predict turbulent 
transport mechanisms in both phases. 

In the present analysis, the effects of interracial waves on the flow field are formulated in terms of 
boundary conditions for the gas-liquid interface. For the gas phase, the wavy interface has such flow separation 
effects as a rough surface in a single-phase flow. While for the liquid phase, the waves generate turbulant 
energy which is transported progressively toward a lower wall region. The analytical results are in good 
agreement with available data regarding pressure drop, holdup and velocity profiles. 

1. INTRODUCTION 
Prediction of pressure drop and holdup in stratified two-phase flow is of great importance in 
many engineering applications. Nuclear reactors, film coolers and oil gas pipelines are the 
examples of process involving such type of two-phase flow. Recently, this flow or an 
annular-dispersed flow has been proposed as a cooling system in a controlled fusion reactor. 
Therefore not only experimental but also analytical studies have been conducted actively. The 
typical examples of the experimental works can be seen in Hanratty & Engen (1957), Ellis & 
Gay (1959) or Akai et al. (1977). One of the most important results of these studies is that 
distorted gas velocity profiles have been measured over wavy, rough surfaces. This distortion 
of the gas velocity profile, i.e. the shift of the plane of maximum velocity toward a smooth 
upper wall, accompanied with the significant increase in interfacial shear stress have been 
considered similar to that occurred in rough wall turbulence. We also have studied this flow 
regime in a horizontal air-mercury system as a basic study for magnetohydrodynamic two- 
phase flow, and observed the dame phenomena as well as a significant increase in eddy 
viscosity of the gas phase in the vicinity of the disturbed interface. 

The work by Lockhart & Martinelli (1949) is one of the earliest studies to predict analytically 
the pressure drop and the holdup for stratified two-phase flow. Though this attempt may be the 
simplest one and applicable to all two-phase flow regimes, relatively low accuracy is attained 
due to its flexibility. From this point of view, there have been a number of analytical works to 
predict these characteristics or to improve the Lockhart-Martinelli correlations. 

Among these active studies, Johannessen (1972) and Aggour & Sims (1978) presented the 
relations among non-dimensional pressure drop, ~L or ~bG, holdup, l-a, and the parameter X, 
giving fairly good agreement with available data. For the wavy interface regime, however, the 
predicted pressure drops are generally smaller than the measured ones. This underprediction 
may be due to the lack of consideration about the effects of rough interface on the flow field. 
We have conducted a semi-empirical analysis which introduced an idea of "wave-induced shear 
stress", and obtained good results describing the tendency of the pressure drop as well as the 
distortion of the gas phase velocity profiles. These results are shown in Akai et al. (1980). 

In the very practical case of turbulent-turbulent flow regime, which the present study treats, 
the turbulent transport mechanisms in both phases have been described using Blasius friction 
coefficient formula, 1]7-power law for the velocity profiles or the empirical formula for the eddy 
viscosity profiles. But when we give our attentions to the development of numerical procedure 
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for single-phase turbulent shear flows, we could find many successful studies dealing with so 
called "second order" closures for turbulence equations. This development is a consequence of 
the need for models of turbulent flow more widely applicable than those incorporating simple 
notions of effective turbulent coefficients. Jones & Launder (1972, 1973) presented a two- 
equation model of turbulence which incorporated transport equations for turbulence kinetic 
energy, k, and energy dissipation rate, E, and expressed the eddy viscosity as a function of these 
quantities to describe turbulent shear stress. This model was applied to the prediction of 
laminarization (1972) and low-Reynolds-number phenomena (1973), and has been recognized to 
give satisfactory results for a variety of flow fields. Hanjalic & Launder (1972, 1976) developed 
a three-equation model which incorporated Reynolds stress as a dependent variable in addition 
to k and ~, and applied it to an asymmetric flow (1972) and a low-Reynolds-number turbulence 
(1976). 

In such flows with asymmetric velocity profiles as the present case, it has been generally 
indicated that there exists a displacement between the zeros of the turbulent shear stress 
(u'v'= 0), and the mean gradient of the velocity (au/Oy = 0). This means that the turbulence 
energy production term -u'v'(au/ay) becomes negative within a zone of the displacement. Of 
course this phenomena cannot be described by the eddy viscosity hypothesis, and it might be 
more convenient to use the three-equation model than the two-equation model. In the present 
analysis, however, we use the two-equation model of turbulence by Jones and Launder with 
some modifications. For we consider the wavy interface as a turbulence energy source and 
attempt to treat its effects through the boundary conditions for the turbulence energy. The 
boundary conditions for the energy dissipation rate can be evaluated from the k-profile. But if 
we use the three-equation model, it becomes difficult to adopt the boundary conditions for 
turbulent shear stress because of the complicated structure of the velocity fluctuations or their 
products in the vicinity of the wavy interface. Moreover, the increase in the number of 
dependent variables makes the solution procedure complicated and requires long computing 
times. 

The present paper describes the application of the two-equation model of turbulence to the 
stratified two-phase flow. The purpose of this study is to analyze the flow considering the effects 
of the interfacial waves on the turbulence structure of both phases. The appropriate boundary 
conditions for the interface are examined through the comparison with available data and 
physical considerations. 

2. ANALYSIS 

The proposed analytical method assumes that the two-phase stratified flow in a rectangular 
channel should be adequately represented by the two-dimensional flow between two parallel 
plates. The following fundamental assumptions are made: (1) both fluids are incompressible 
with constant physical properties, and (2) the flow is steady and fully developed turbulent- 
turbulent flow. The "steady" assumption in (2) is not introduced in the governing equations 

described below for computation. 

2.1 Governing equations 
The set of differential equations governing the unsteady turbulent transport process is 

written in the form: 
Streamwise momentum. 

at Oy (v + Vr p Ox " 

Turbulence energy. 

at-ay (v+vr  +Vr \oy !  ~" [2] 
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Energy dissipation. 

3t-Oy --~]-~J Cd'--kVr[,-~y) -C~f2--k +2V1:r~-~f]" [3] 

Turbulent viscosity hypothesis. 

- U ' V ' =  3U - . k 2 0 u  [4] 

where u, k, E and P denote mean streamwise velocity, turbulent kinetic energy, turbulent 
energy dissipation rate and static pressure respectively, and x is Cartesian space coordinate in 
the mean flow direction, y is the coordinate normal to the wall. Equations [2]-[4] represent the 
two-equation model of turbulence proposed by Jones & Launder (1972, 1973). In the present 
study, some modifications have been made to the original set of equations. These considerations 
are mainly based on the work by Hanjalic & Launder (1972, 1976) in which they treated an 
asymmetric turbulent flow between parallel plates and low-Reynolds-number turbulence. 

The main feature of these modifications is to introduce the quantity ~ and replacing e 2 in the 
original dissipation equation by ~. The quantity ~ is defined as 

_2u(Ox/(k)~ 2 

and represents the "isotropic" part of the dissipation rate. In the original turbulent model 
equations (Jones & Launder 1973), a term of the form 

2,(0V(k) 2 
\ ~y / 

was added to the right of [2]. They included this term for computational purpose to let 
go to zero at the wall. This boundary condition for e is necessary for their finite-difference 
procedure to solve the e-equation; they introduced this extra term which described the 
actual isotropic behavior of the turbulence dissipation rate in the immediate vicinity of the wall, 
and which was of negligible magnitude in a core region of the flow. In the present analysis this 
term has been excluded from [2], while the quantity g has been introduced as described above. 
Consequently, the boundary condition for the energy dissipation rate becomes 

E_~ 2v(cgX/(k)]: \ 0y } f o r y ~ 0  

instead of E--> 0, which has poor physical appropriateness. 
The model equations contain four empirical constants, C's and ~,, which are assigned the 

values given in table 1. The influence of the turbulent Reynolds number Rr = k2/¢v is 
introduced by .f's summarised in table 2. 

2.2 Formulation for stratified two-phase flow between parallel plates 
In this section we adopt the above set of turbulence model equations to the co-current, 

stratified, two-phase flow between parallel plates. The following nondimensional variables are 
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Table I. Empirical constants 
in model equations 

C~ C, C2 ~, 
0.09 1.45 2.0 1.3 

Table 2. Reynolds-number func- 
tions in model equations 

/i  1.0 
/'2 1.0-0.3 exp ( -  R[ )  
/',, exp[ - 2.5/(I + R-r/50)] 

introduced: 

b u .  2 _ 
U = U, 

/:L 

k = u ,2g ,  = U*4D, 
v£ 

4 
P = pLU-~b2p, 

1: L 

y = by, x = b i t = u..-~L2 {,, 
U.  

u,b 
Re= uL' 

where b denotes the distance between parallel plates, and u. is the friction velocity defined by 
the shear stress at the lower wall and the density of the liquid. The liquid properties (subscript 
"L") are selected as scaling parameters. In these expressions, the tilde quantities, E and D are 
dimensionless. We drop the tildes for convenience, but henceforth in the paper all quantities 
are dimensionless unless stated otherwise. 

With above dimensionless quantities, we can write the coupled equations for two phases as 
follows: 

Momentum [or liquid phase. 

OuL_ 1 o[( C:E?]OuL] oP 
Ot R - ~  l+~u~ D£/ Oy J c~x" [61 

Momentum for gas phase. 

Oua va l 0 [ ( I + VL ,., ~ Ea2] Ouc ] PLOP 
0t - vL Re 2 0y L \ v~ c/zl/a" D-Ga]-~-Y ] Pc 0x" 

[7] 

Turbulence energy for liquid phase. 

o& 1 o [(.  EL ~ OE£ E? OuL [81 

Turbulence energy for gas phase. 

Ot vL Re 2 
[9] 

Energy dissipation for liquid phase, 

8DL 1 0 . + I  (,¢EL2~SEL]+ OuL 2 

[1Ol 
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Energy dissipation for gas phase. 

Oy VLRe 2 va-~, ~ Da / Oy j + C,C.f.Ea 

- C d 2 ~  + 2.0-~L R~ C..f E°2 { °2u° ~ 2 

Re2\ Oy ] ' 

[111 

and the turbulent Reynolds numbers are: 

RrL = ~  (liquid phase), 

Rra-- YL EG 2 (gas phase). 
va Da 

In above equations, the subscripts "L"  and "G"  refer to the liquid and the gas 
respectively. 

We incorporate the following boundary conditions for the lower and the upper wall: 

phase 

: 2±(oV(eL)  2 UL=O, EL=O, DL Re2\ Oy / a t y = 0  

1 (OV(Eo)  2 
ua=O, Ea=O, Da=~-~L~d\--~--y ] a t y = l .  [121 

Moreover the boundary conditions for the gas-liquid interface are necessary. Here, for the basic 
case in which the gas-liquid interface is assumed to be smooth, the appropriate boundary conditions 
are as follows: 

at y = yi; 

U L = U G ,  T L  = T G , 

EL=O, Ea=O, 

o 1 [Ov'(EL)'~ 2 I_~_[Ox/(Ea)~ 2 
DL = , . ~ \ ~ ]  , Do = 2 va 

/7 L Re 2 \ 0y } " [13l 

These boundary conditions are, of course, necessary to be modified when they are applied to 
the wavy interface. This consideration will be given in later sections. 

3.3 Solution procedure 
In the present analysis, the required results are the fully developed and steady state 

characteristics of the two-phase flow, i.e. the pressure drop, the liquid film thickness or the 
velocity field. So, the numerical calculation involves an unsteady approach sequence of 
solutions for the finite difference versions of [6]-[11]. This sequence is similar to that introduced by 
Daly & Harlow (1970), and traces the development of the flow through time from the initial state to 
the steady state. 

In this type of analysis, it is convenient for us to obtain the solution under the condition in 
which the volumetric flow rate of the gas phase, Qa, and that of the liquid phase, QL, are given. 
This requirement is easily satisfied if we use the von Mises transformation (Ames 1965) to 
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accomplish the mathematical formulations for [6]-[11]. Though we first used this method for the 
numerical analysis, this procedure required an enormous computing time for a run. 
This unsuccessful result is mainly due to the large difference between QL and Qa of order 10 2, 
which causes the large difference between corresponding stream functions. Therefore the cell 
sizes for both phases become unbalanced and this results in a severe condition for 
convergence. Another problem existed in the sequence of solving the momentum equations 
simultaneously by the unsteady approach method, because it needed additional corrections 
regarding the streamwise pressure gradient. 

From these points of view, we developed a new sequence which involves unsteady solutions 
for E- and D-equations and steady state solutions for the momentum equations. 

Solution of steady state momentum equations 

Consider the steady state of the momentum equations [6] and [7] in which the profiles of E 
and D are given as an initial condition. Then the momentum equations are rewritten as follows: 

For liquid phase 0 <- y <- y;. 

For gas phase yi < y <- 1. 

Re2.0P 8 - rL, [ 1 4 ]  
8x Oy 

rL = l + ~ ,  D£ / ay F£ oy , [151 

Re 2 0P = O Ox Oy rG, [16] 

out 
~ - ~ ,  +~L ---F~ . 

va ~ "  De / Oy Oy 
[17] 

Here we introduce a new coordinate 7/for the gas phase which is defined as 

I - y = n .  [ 1 8 ]  

Then the momentum equation for the gas phase becomes 

Re 2 O P  _ 0 Ox 87 rc for 0 -< ~ -< ~i, [19] 

r a = - - ~ L  \ + vL 
vc ~ ' ~  Do 7 an - "  ~ ~n " 

[201 

In [15], E goes to zero at the wall while D remains to have a finite value, then the 
nondimensional shear stress at the lower wall becomes 

_ OUL y:O TL(O) - ~ = 1, 

from the definitions. Consequently, integration of [14] yields the shear stress distribution in the 
liquid phase as 

rL(y) =l+Re20-~Py (0 -< y -< yi ). [21] 
a x  
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In the same way, the shear stress distribution in the gas phase is obtained from [16] as follows: 

n 2 0 P  ~'o(r/) = r , - K e  -~-~7 (0< ~ _ 7/i), [22] 

where rt denotes the upper wall shear stress. From the continuity of the shear stress at the 
interface [ro(~i) = rL(Y3], 

r, = 1 + Re2-~x. [23] 

From [15] and [21], we obtain the velocity profile in the liquid phase as 

Y 1 dy+Re2_~xP_xPff 1 
uL(y) = f0 fill f f [y dy, [24] 

and from [20] and [22], the gas phase velocity profile yields 

" 1 2c~p n 1 
uo(n) = - r, f0 ~-do dn + Re -~ fo ~--~ n d,7. [25] 

Considering the continuity of the velocity of the gas and the liquid phase at the interface, it 
follows that 

= -  [~,__1 d,7+ge2,~P[" 1 
r, J0 Fo 0x 3o ~ n d'0. [26] 

When volumetric flow rates per unit width for both phases, QL and Qo, are given, the film 
Reynolds numbers can be defined as 

ReL=ULS=QL R e o = U ° ( b - B ) - Q °  
VL PL PO PO 

where UL and uo are the (dimensional) mean velocity of the liquid and the gas phase 
respectively, and 8 is the liquid film thickness. QL and Qo can be expressed in terms of 
integrals of the nondimensional velocity profiles so that the Reynolds numbers are written of 
the form 

fo" 
ReL = Re 2 UL(y) dy, [27] 

Reo = VL Re 2 fn '  UO (1']) dn. [28] 
/2 0 .tO 

Substituting [24] into [27], and [25] into [28], we obtain 

ReL=f"f' i  xfo,,fo, l Re 2 Jo -,o ff/L dydy+Re2 ff/L y d y d y '  [29] 

vaReo fo., lB. 1 r ~ ' r " l  VL Re 2 - - r '  ffdadrldrl+Re2Jo Jo ffaa r/dr/drl" [30] 
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And from [18], 

ni + Yi = 1. [31] 

Equations [23], [26], [29], [30] and [31] for the given profiles of FL(y) and FG0?) may be 
solved to obtain five unknown parameters: rl, Re, OP/Ox, y~ and r/~. It is difficult, however, to 
solve these equations since the unknown variables yi and 7/~ have come to be integral limits in 
[26], [29] and [30]. 

In order to eliminate this difficulty, we introduce new (stretching) coordinates defined by 

r / Yiold "~ 
E L ( y )  = rLo~d[--ff Y ] -~ F L o , d ( ~ ) ,  

FG(T/) = ,  Vo,d~-~- r/] : Fao,dtsr), 

[32] 

[33] 

where the subscript "old" denotes that these quantities are the trial values or the values 
obtained in the up-to-date step. Equations [32] and [33] mean that the total (molecular+ 
turbulent) viscosity profiles may be assumed to be only stretching along y-coordinate and not 
change their magnitude by the change or the correction of the liquid film thickness. This is, of 
course, not true since the significant change in liquid film thickness may cause a serious effect 
on the entire flow field. But as the solution is approaching to the steady state, the change of the 
liquid film thickness becomes small, indeed so small that no effect on the flow field, i.e. the 
velocity profiles, turbulence energy profiles, pressure drop, etc. can be distinguished. Using 
these new variables, the definite integrals in [26], [29] and [30] can be rewritten, for example, as 
follows: 

f0 y~ I Y_d_/fYi°~d 1 
d y  = Y/old Jo FLold(~) ds¢" 

The integral of the left can be calculated by a numerical integration of "old" value of 1/FL over 
the liquid phase. 

Consequently, [26], [29] and [30] are rewritten as 

1 \ r l i o J d /  

Yi 2 _ "qi 2 _ 

= Re2~x [ - (yTjd) ~L + (~-~ol~) ~a ] ' [34] 

R e L = (  Yi ]2rc+Re2~P ( Yi ~3AL [35] 
Re 2 \Yiold/ t~X \Y/old/ ' 

vGReG ( ni ]~FG+Re2aP( ni )SAc ' 
uL R e  2 = - r l  \ ~ o t a /  ox  \'0iold/ 

[36] 

where 

~0 T M  l 
~L --- d~L(Yio,d) = FLo,d(sr ) ds ¢, 

~O "qi°ld 1 
~o ~- <~a(*/iold) = F6old(O dsr' 
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fyio~ 1 ~: d~:, 
~/L =- ~lL(Yiold) = JO FLold(S ¢) 

fo ni°ld 1 d (  , 
~C --~ ~C('Oiold) = FCold(~') sr 

/o,,O. ~ 1 =(,,o. FL = f ~ d~ d~ (~L(~) d~, J0 ~o,.(~) ,0 

--- fo' Fc:(~')l ds r d~'= fo ~,o,. q~c (~')d~', 

~" Ylold ~'~ 1 Y/old 

A G  ~- fo "°'d c 1 niold 
fo FC~Id(~') ~" d~" d~'= fo ~bc(~)ds r. 

Equations [23], [31], [34], [35] and [36] constitute an explicit form regarding rl, Re, OP/Ox, Yi 

and 'oi. There equations are manipulated to yield 

[(XG + X E ) ( X D  - XC)  - (XB - X A ) ( X H  + XF)] "o4 

+ [(XB - X A ) ( X G  + 3 X F ) -  2 X E ( X D -  X C ) -  X A ( X H  + X F )  

- (XG + X E ) ( X B  - 2XC)] 'oi 3 
+ [2XE(XB - 2 X C ) -  X C ( X G  + X E )  + X E ( X D -  X C ) -  3 X F ( X B  - X A )  

+ X A ( X G  + 3XF)] 'o2 
+ [ X F ( X B  - X A )  - 3 X A .  X F  + 2 X C .  X E  - X E ( X B  - 2XC)] 'o,- 
+ X A .  X F -  XC.  XE 
= 0, [37] 

where 

X A  = ~L XB = ~c X C  : ~L X D =  (be 
Y/old' '0/old ' Y/old ' '0/old' 

X E =  FL X F =  AL X G  = UL ReL r .~ :  X H  = ~'L ReL Ac 
Yiold 2' Yiold 3' PC Rec 'O/old PC Rec ~3' 

This fourth order equation for 'oi can be solved algebraically, but we use a numerical procedure 
(bisection method) for convenience. It was confirmed that, for a given flow condition, [37] had a 
unique solution in the range 0 < 'oi < 1. If we first find out the solution for 'o, then a set of the 
corresponding values for y~, ~l, Re and OP/Ox is obtained easily from the other equations. Then 
the velocity profiles for both phases can be calculated from [24] and [25] as follows: 

Ut.(y) = Y-"~-/~bL(SO) + Re2 ~xP ( ~ ) 2  Yiold q/L(~), [381 

- 77--/~bo(~')  + R e  z ~,~(sr).  
uc('o) = rl'oiold [391 

Solution o[ E- and D-equations 

As mentioned before, the turbulent energy and the energy dissipation equations are solved 
by the unsteady approach method. During each calculation cycle we first solve the momentum 
equations to obtain u-profile, and then solve the unsteady E- and D-equations. Equations 
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[8]-[11] have analogous parabolic forms and are written schematically as 

-~-t = {diffusion + production + dissipation}, [40[ 

where q denotes the corresponding variable, E or D. Here the simple, forward-step, finite 
difference equations of the form, 

q,ew - qold _ {diffusion + production + dissipation}oral, 
8t [411 

are incorporated to solve the unsteady equations of the form [40], where 8t denotes the time 
increment. When the explicit form of a finite difference equation is used, the stability condition 
for the formula becomes an important problem. As is widely known (e.g. Ames 1965), the 
stability of this scheme mainly depends on the form of the non-linear diffusion term such as 

or in the finite difference form, 

,421 

where K(q) is a diffusion coefficient and, in the present case, this represents the total viscosity 
for the turbulence energy or the energy dissipation rate. 

The stability condition for this scheme is expressed as follows: 

K(q). 8t 1 
(@)2 < ~. 

In the present numerical treatment, the time increment 8t is determined in each cycle as 

1 min[8y 2, 8"0 2] 
8 t = -  

4 max[KL(y), Ko(n)]' 

Moreover, an additional care has been taken for this term, i.e. it is more accurate to use a 

non-conservation form, 

0 0 82q 
8y 8y ' 

than to use a conservation form as expressed in [42]. Taking into account these considerations, 
the resulted numerical process has been always stable and a satisfactory convergence is 
obtained. 

The criterion used to determine whether a problem has converged sufficiently to the steady 
state is that 

X 8t X 8t 1-~-1 /<10_,  ' max , , , - - - -  
2 X o :  _1 
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where the summations being taken over the corresponding phase. A reduction in the numerical 
value in the criterion to 10 -1° had an insignificant effect on the final results. 

Initial conditions 

As described in the previous sections, initial profiles for EL, E~, DL and De and a trial value 
for Yi (or T/i) are necessary as starting conditions. Of course it is preferable to choose these 
conditions to roughly approximate the expected steady state profiles in order to reduce the 
computing time. Unfortunately, however, the available information regarding the turbulence 
structure for this type of flow is poor. So, at the preliminary stage of the calculation, the initial 
profiles for the turbulence energy and the energy dissipation rate were provided numerically 
from the analogy to a single-phase turbulent flow. This calculation was, of course, an inefficient 
one as to computing time, but provided useful starting conditions to the subsequent 

calculations. The actual numerical analysis has been conducted using the numerical results of 
this preliminary calculation or of the preceding analysis having the close value of input 
condition, i.e. QL and Qc. The trial value of yl is not a serious problem regarding the 
convergence, so we use yi = 0.3 as a starting value. 

150 cross-stream nodes were used first with two thirds of these covering the gas phase, and 
subsequently they were reduced to 70, with 50 for the gas phase, to reduce the computation 
time. This change in cell size, however, appeared to cause no significant discrepancy between 
the results. For a mesh of 70 cells and appropriate initial conditions, generally, about 104 
calculation cycles are necessary to reach steady state, leading to computing times per a run of 
about 120 sec on the HITAC M-180 computer at Tokyo Institute of Technology. 

3. R E S U L T S  A N D  D I S C U S S I O N S  

In this section the numerical results for two types of boundary conditions (smooth interface 
and wavy interface) are shown and compared with the data of stratified air-mercury flow in a 
horizontal rectangular channel. The internal dimensions of the test channel were 48 mm wide 
and 18 mm high, with the total length 3.6 m. The details of the experiment is shown in Akai et 
al. (1980). In addition to the results described in the above paper, we have measured the mean 

velocity profile and the streamwise turbulence intensity profiles in the mercury film flow. These 
velocity data were obtained using wedge-shaped hot-film probes (DISA 55R36) with overheating 
about 5°C. These probes were traversed vertically by a micrometer head with ±0.02 mm of 
accuracy. The region very close to the lower wall could not be measured because of the size of 
the probe. The closest approach was y = l.l mm. Also the region near the gas-liquid interface 
could not be accessed, for the high surface tension of the mercury causes the probe to be exposed to 

the air flow. The output signals from the anemometer were processed in terms of probability 
density functions to determine the mean and the fluctuating voltages. The resulted mean voltage 
profile was integrated over the liquid film to obtain the average voltage corresponding to the 
average velocity. The calibration curve for the anemometer could be determined by repeating 
this procedure for various gas or liquid flow rates. There are two possible causes for the error in 
this calibration method, i.e. the velocity profile in the wide direction and the lack of the velocity 
data near the lower wall and the interface. Although this source might introduce some errors 
in estimating a point velocity, the resulant shapes of the mean velocity or the turbulence 
intensity profiles should be considered not to change seriously. 

The analysis of the turbulent air flow was conducted prior to the stratified flow calculation to 
confirm that the modifications to the equations or the boundary conditions should be reasonable. 
The calculated friction coefficient C r = ro/(l/2) p/~2) is shown in figure 1 with our experimental 
data obtained in the test channel described above. As can be seen in the figure, the predicted 
value for C I is slightly smaller than the experimental results. This tendency may be partly due 
to the small aspect ratio of the channel, which is inconsistent to the assumption of two- 
dimensional flow. But the discrepancy of these values (a few per cent) is small enough that we 
consider the present equations and the boundary conditions to be sufficient. 
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Figure 1. Friction coefficient of air flow. ©, Experiment; - - ,  prediction. 

Henceforth in this section the analytical results for the stratified flow will be compared to 
the experimental data at ReL = 8.04 × 10 3. 

3..1 Smooth interface case 
In this case, the numerical calculation has been conducted under the boundary condition 

[13]. The results for the pressure drop and the holdup are presented in terms of the Lockhart- 
MartineUi parameters in figures 2 and 3. In these figures, X~t = (dP/dx)L/(dP/dx)G is the ratio 
of the frictional pressure drop of the liquid phase to that of the gas phase when each phase 
flows alone in the channel, and 6L 2= (dP/dx)rp/(dP/dx)L is the ratio of the two-phase flow 
pressure drop to the pressure drop of the liquid phase flowing alone in the channel. The solid 
lines show the results of the present analysis and the dashed lines give the correlations for 
turbulent-turbulent flow by Aggour & Sims (1978) which are of the form, 

Xt, = 1.189(1 - o t ) 2 ( 2  - or)lot 3 , 

SL 2 = 0.841/(1 -- a)2(2 -- a) ,  [43] 

where a is the void fraction or I -8 lb .  Aggour and Sims derived more complicated relations 
through the analysis of gas-liquid stratified flow between two wide parallel plates taking into 
account the inteffacial shear stress and a smooth, moving interface. They simplified those 
equations under the condition ( Q L / Q 6 ) [ a / ( I -  a ) ] , ~ l  to yield the relations [43]. These cor- 
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Figure 2. Holdup for air-mercury flow. ReL = 8.04 x 103. O, Experiment; - - ,  prediction (smooth interface); 

- -- ,  correlation by Aggour and Sims. 
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Figure 3. Non-dimensional pressure drop for air-mercury flow. ReL = 8.04x 10 ~. O, Experiment; - - ,  

prediction (smooth interface); - -- ,  correlation by Aggour and Sims. 

relations can be derived directly using the assumption that the interracial velocity is negligible 
for the gas phase, i.e. the shear stress at the interface is equal to that at the upper wall. In those 
flow conditions, i.e. when ReL is small, the present analysis shows closer tendency to [43], and 
for ReL < 4 x I03, the results cannot be distinguished from the dashed lines. This fact indicates 
that the present solution procedure for the stratified flow should be appropriate. 

The experimental value especially for the pressure drop has a tendency to deviate from the 
analytical curve for the smooth interface case as the gas flow rate is increased (X2t ~0). This is 
a natural result of disregarding the effect of the rough interface. 

3.2 Wavy interface case 
As mentioned in the previous sections, we intend to treat the effects of the interracial waves 

on the flow field through considerations about the boundary conditions at the interface. There 
may be one possible expression for this effect, e.g. to consider the waves as a turbulence energy 
source. The simplest approach for this concept is to give kL and ka some finite values at the 
interface as the boundary condition. These values can be evaluated from the wave structures. 
With a simple consideration the perturbation energy at the interface can be written as 

k~ = 13 x , [44] 

where Ah and T denote the wave height and the wave period respectively and/3 is a numerical 
constant. Equation [44] means that the turbulence energy at the interface can be represented by 
the surface displacement velocity in the vertical direction. The boundary condition for the 
turbulence energy at the interface is given by 

kL = k6 = kl. [45] 

But we have not reached satisfactory results using [45] only. This is because that, though the 
magnitude of ki (when/3 - I) has the same order to the turbulence energy in the bulk liquid 
flow, it is too small to influence the flow structure of the gas phase. 

This problem might be resolved if one considers that the rough wavy interface causes the 
separation of the gas flow above it. In this case, the continuity condition for the turbulence 
energy at the interface may not always be necessary. Large scale eddies containing a large 
amount of energy are produced by the flow separation. This process is considered to be not 
concerned with the turbulence structures in the liquid phase. In these circumstances, however, 
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it may be reasonable to expect that the microscopic relationship between the turbulence energy 
and the energy dissipation rate should hold in the dissipation range. Unfortunately, however, 
we have found no appropriate information to estimate the energy boundary condition for this 
separating flow. Therefore the boundary condition for the velocity has been introduced after 
Hanjalic & Launder (1972) or Launder et al. (1975). 

Figure 4 shows a few typical examples of dimensionless velocity profiles for the interracial 
region of the gas phase in the air-mercury flow. In the figure, the velocity and the distance from 
the interface are nondimensionalized by the interfacial friction velocities. The well known 
universal velocity profile is shown for comparison. In figure 4, a downward, nearly parallel shift 
from the universal velocity profile is observed with increasing gas phase Reynolds number. This 
trend corresponds to the remarkable increase of the interfacial shear stress, and is a well known 
characteristic of the rough wall turbulence. 

For the turbulent flow over a rough wall, the velocity profile formula of the form 

1 ~ + B [46] u + = ~ In , 

is widely applied. In [46], u ÷ is the velocity divided by the friction velocity at the rough wall, K 
is von Karman's universal constant, y is the distance from the wall, ks is a roughness parameter 
and B is a constant depending on the roughness characteristics and the flow condition. 

Based on this expression, the velocity profiles are re-plotted as in figure 5. In the figure, y is 
chosen as a distance from the interface and ks is chosen as Ah/2. From this figure, B in [46] is 
nearly constant over the range of gas flow rate to which the present analysis refers. The solid 
line shows a correlation 

y - ~  
u ÷ = ~.14 In A--~- + 5.2. [47] 

Therefore we use [47] as a "near-interface" condition to describe the turbulence structure in 
the gas phase. Consequently, the boundary conditions for the wavy interface are expressed 
using [45] and [47]. This means: for the liquid phase, the interfacial waves act as turbulence 
energy source: for the gas phase, the interracial waves cause the flow separation. These 
boundary conditions make it necessary to modify the numerical procedure described before. 
This modification has to introduce some approximations using values obtained in the previous 
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Figure 4. Mean gas velocity profiles for interracial region. Re/. =8 .04x  103. O ,  Reo =6.25 x 103; O, 

ReG = 8.54× 103; A, Reo = 1.32 × 104; - - ,  universal velocity profile. 
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Figure 5. Rough surface correlation for gas velocity. ReL = 8.04x 103; O, ReD = 6.52× 103; O, 
Re~ = 8.54 x 103; A, Re~ = 1.32 x 104; --, correlation line. 

computational step. But the final results are always satisfactory because the physical require- 
ment, i.e. 3q/Ot = 0, is attained. 

It is of course necessary to evaluate Ah and T in [44] and [47] in order to use these expressions. 
For this type of flow, however, there has been no useful theoretical approach to predict the 
structures of interfacial waves accurately. So we examined our experimental data and obtained the 
following empirical correlations 

- ~ =  7.38 x 10 -2 - 9.94 × 10 -6 Rea + 7.36 x 10 -1° Rea 2 (cm), 

Ah T[---2 = 3.68 - 2.47 x 10 -4 Rea + 2.54 x 10 -8 Rec 2 (cm/s), 

for ReL = 8.04 x 103, 5 x 103 < Rea < 1.6 x 104 . 

[48] 

[49] 

The maximum error of these expressions is about 20%. We use [48] and [49] to determine the 
parameters in the boundary condition at the interface. The remaining unknown parameter/3 in 

[44] has been examined through the numerical optimization such that the calculated pressure 
drop and the liquid film thickness have agreed well with the experimental data. The resultant 
value for/~ is 0.50 under the present flow conditions. This value was the expected one and 
means that the turbulence energy at the interface can be well represented by the surface 
displacement velocity according to the definition of the turbulence kinetic energy. 

The calculated liquid film thickness (holdup) and pressure drop are compared to the 
experimental results in figures 6 and 7. The numerical results for the smooth interface case are 
also shown by dashed lines and the notation "smooth" for reference. In figure 6, the present 
analysis for the wavy interface (notation "wavy") exhibits a better agreement with the experi- 
mental data than that for the smooth interface. However the improvement is not so significant 
as that for the pressure drop (figure 7). This is mainly due to the simple modelling of the 
turbulence energy at the interface. In figure 7, on the other hand, the effect of the rough 
interface is quite clear. The numerical results for the wavy interface explain well the tendency 
of the experimental data and the quantitative agreement is also quite good. The results for the 
smooth interface exhibit a poor prediction as the gas phase Reynolds number is increased. 

In figures 8-10 the calculated velocity profiles and turbulence energy profiles are compared 
with the experimental data. Figures 8(a), 9(a) and 10(a) show the results for the gas phase. In 
these figures, the velocity and the distance from the interface are normalized by the maximum 
velocity and the gas phase thickness respectively. The solid and dashed lines denote the 
numerical results. The datum points compared with the turbulence energy show the streamwise 
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Figure 6. Liquid film thickness. ReL = 8.04 x 10 ~. ©, Experiment; ---, prediction (smooth interface); --, 
prediction (wavy interface). 
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Figure 7. Pressure drop. ReL = 8.04 x 10 3. ©, Experiment; - - -, prediction (smooth interface); - - ,  prediction 
(wavy interface). 

turbulence intensities (X/(u'2)/u), which can be considered to be proportional to the square root 
of the turbulence energy except for the region very close to the boundaries. This similarity 
between X/(u '2) and x/(k) might be confirmed through the interpretation of the available data by 
Laufer 0953) for smooth wall turbulence and Hanjalic & Launder (1972) for rough wall 
turbulence. The results for the smooth interface are shown in figure 8(a), in which the numerical 
value has been obtained under the boundary conditions (12) and (13). The plane of the 
maximum velocity is located slightly below the central plane of the gas phase due to the moving 
interface at y = 8. As can be seen from the figure, the velocity and the turbulence energy 
profile become nearly symmetric in the case of smooth interface. The wavy interface cases, on 
the other hand, show quite different results as shown in figures 9(a) and 10(a). The plane of the 
maximum velocity shifts toward the smooth lack of two lines indicated by [ ] in original paper 
page 29, that is [upper wall as the gas phase Reynolds number increased. These strongly 
asymmetric natures of the profiles cannot be explained by the analysis for the smooth] interface, 
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Figure 8. Velocity and turbulent energy profile (smooth interface). ReL = 8.04X l&, ReG = 2.34x 10 3. 
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Figure 9. Velocity and turbulent energy profile (wavy interface). ReL = 8.04 x 103, Re~ = 6.52 x 103 (see 
figure 8 for notation). 
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Figure 10. Velocity and turbulent energy profile (wavy interface). ReL = 8.04 X 103, R% = 1.32 × 104 (see 
figure 8 for notation). 

and that is why the conventional analysis with smooth interface assumption underpredicts the 
pressure drop for the wavy flow regime. Both for smooth and wavy interface, the calculated 
velocity profiles agree well with the experimental data, and the measured profiles of the turbulence 
intensity are also satisfactorily reproduced by the analytical results for turbulence energy. 

Figures 8(b), 9(b) and 10(b) show the results for the liquid phase. The distance from the 
lower wall is normalized by the liquid film thickness. The velocity at the plane y/~ = 0.5 is 
chosen as a scaling value for the velocity profile. The results for the smooth interface are 
shown in figure 8(b). The value of UL/(UL)y/~=0.5 at y = 8 is 1.43. The velocity profile shows a 
well known nature of Couette flow due to the moving boundary at y/8 = 1. On the other hand, 
the velocity profiles for the wavy interface are flattened ones (figures 9b and 10b), and indicate 
that a large amount of turbulent mixing should occur. This mechanism becomes clear from the 
turbulence energy profiles. The turbulence energy produced by the waves is transported 
progressively toward the bulk flow field. This phenomenon regarding the wave-induced velocity 
fluctuation was reported by Akai et al. (1977) for air-water system. As may be seen in these 
figures, the experimental results are fairly well explained by the present analysis. 

4. C O N C L U S I O N S  

The present work has attempted to analyze turbulent transport mechanisms in a horizontal, 
stratified two-phase flow with a two-equation model developed by Jones and Launder. 

The effects of the interracial waves on the flow field have been formulated in terms of the 
boundary conditions for the wavy gas-liquid interface. For the gas phase, the wavy interface 
has been considered to have a flow separation effect as a rough surface in a single-phase flow. 
For the liquid phase, the waves have been treated as a turbulence energy source. The 
numerical results taking into account these effects are in good agreement with the experimental 
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data for air-mercury system. Of course the physical considerations in the present analysis are 
yet by no means perfect. It must be emphasized that the turbulence structure in the separating 
flow over a rough surface has to become clear through the accumulation of detailed experimen- 
tal data and the theoretical approach. 
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